


Table of Contents

03  Threat Summary

04  Findings Summary

02  Executive Summary

05  Vulnerability Details

01  Vulnerability Classification and Severity

USE OF FLOATING PRAGMA

OUTDATED COMPILER VERSION

CONTRACT NAME SHOULD USE PASCALCASE

MISSING @AUTHOR IN NATSPEC COMMENTS FOR CONTRACT DECLARATION

MISSING @DEV IN NATSPEC COMMENTS FOR CONTRACT DECLARATION

MISSING @DEV IN NATSPEC COMMENTS FOR FUNCTIONS

MISSING @INHERITDOC ON OVERRIDE FUNCTIONS

MISSING NATSPEC COMMENTS IN SCOPE BLOCKS

MISSING NATSPEC DESCRIPTIONS FOR PUBLIC VARIABLE DECLARATIONS

MISSING @NOTICE IN NATSPEC COMMENTS FOR CONSTRUCTORS

MISSING @NOTICE IN NATSPEC COMMENTS FOR FUNCTIONS

NAME MAPPING PARAMETERS

USE SCIENTIFIC NOTATION

AVOID RE-STORING VALUES

AVOID ZERO-TO-ONE STORAGE WRITES

BYTES CONSTANT MORE EFFICIENT THAN STRING LITERAL

CHEAPER CONDITIONAL OPERATORS

CHEAPER INEQUALITIES IN REQUIRE()

DEFINE CONSTRUCTOR AS PAYABLE

FUNCTIONS CAN BE IN-LINEDPage 1 SolidityScan A security assessment report



06  Disclaimer

05  Scan History

OPTIMIZING ADDRESS ID MAPPING

PUBLIC CONSTANTS CAN BE PRIVATE

SMALLER DATA TYPES COST MORE

STORAGE VARIABLE CACHING IN MEMORY

VARIABLES DECLARED BUT NEVER USED

Page 2 SolidityScan A security assessment report



01.Vulnerability Classification and Severity

Description
To enhance navigability, the document is organized in descending order of severity for easy reference. Issues are categorized

The issue does not affect the contract's operational
capability but is considered good practice to address.

The issue affects the ability of the contract to operate in
a way that doesn’t significantly hinder its behavior.

The issue affects the contract in such a way that funds
may be lost, allocated incorrectly, or otherwise result in a
significant loss.

The issue has minimal impact on the contract’s ability to
operate.

This category deals with optimizing code and refactoring
to conserve gas.

High-severity vulnerabilities pose a significant risk to both
the Smart Contract and the organization. They can lead to
user fund losses, may have conditional requirements, and
are challenging to exploit.

as  
aware of the issue but has chosen not to resolve it. Issues labeled as  

  Fixed,     Pending Fix,   or       Won't Fix,  indicating their current status.     Won't Fix   denotes that the team is
  Pending Fix   state that the bug is yet to be

resolved. Additionally, each issue's severity is assessed based on the risk of exploitation or the potential for other unexpected
or unsafe behavior.

Critical

Medium

Informational

Low

Gas

High

Page 3 SolidityScan A security assessment report



02. Executive Summary

OREX
0x3C10e343095e4FDdf5CC36FCd41E298cF9aD2eAA
https://bscscan.com/token/0x3C10e343095e4FDdf5CC36FCd4..

-

-

Solidity

-

Static Scanning -

-
Website

Language

Contact Email

Audit Methodology

Publishers/Owner Name Organization

Contract Type

The SolidityScan score is calculated based on lines of code and weights assigned to
each issue depending on the severity and confidence. To improve your score, view
the detailed result and leverage the remediation solutions provided.

This report has been prepared for OREX using SolidityScan to scan and discover vulnerabilities and safe coding practices in
their smart contract including the libraries used by the contract that are not officially recognized. The SolidityScan tool runs a
comprehensive static analysis on the Solidity code and finds vulnerabilities ranging from minor gas optimizations to major
vulnerabilities leading to the loss of funds. The coverage scope pays attention to all the informational and critical
vulnerabilities with over 700+ modules. The scanning and auditing process covers the following areas:

Various common and uncommon attack vectors will be investigated to ensure that the smart contracts are secure from
malicious actors. The scanner modules find and flag issues related to Gas optimizations that help in reducing the overall Gas
cost It scans and evaluates the codebase against industry best practices and standards to ensure compliance It makes sure
that the officially recognized libraries used in the code are secure and up to date.

The SolidityScan Team recommends running regular audit scans to identify any vulnerabilities that are introduced after OREX
introduces new features or refactors the code.

Security Score is GREAT
91.48

Page 4 SolidityScan A security assessment report

https://bscscan.com/token/0x3C10e343095e4FDdf5CC36FCd41E298cF9aD2eAA


03. Threat Summary

Threat Score

The token contract incorporates a burn function that enables the intentional reduction of token amounts,
consequently diminishing the total supply. The execution of this burn function contributes to the creation
of scarcity within the token ecosystem, as the overall availability of the token decreases.

Your smart contract has been assessed and assigned a Low Risk threat score.
The score indicates the likelihood of risk associated with the contract code.

Source code verification provides transparency for users interacting with smart contracts. Block explorers
validate the compiled code with the one on the blockchain. This also gives users a chance to audit the
contracts, ensuring that the deployed code matches the intended functionality and minimizing the risk of
malicious or erroneous contracts.

Minting functions are often utilized to generate new tokens, which can be allocated to specific addresses,
such as user wallets or the contract owner's wallet. This feature is commonly employed in various
decentralized finance (DeFi) and non-fungible token (NFT) projects to facilitate token issuance and
distribution. The Presence of Minting Function module is designed to quickly identify the presence and
implementation of minting functions in a smart contract. Mint functions play a crucial role in creating new
tokens and transferring them to the designated user's or owner's wallet. This process significantly
contributes to increasing the overall circulation of the tokens within the ecosystem.

Low Risk

98.5 /100

THREAT SUMMARY

Contract’s source code is verified.

The contract cannot mint new tokens.

The tokens cannot be burned in this contract.

SEVERE LOW

Page 5 SolidityScan A security assessment report



Is ERC-20 token.

This is not a Pausable contract.

Owners cannot blacklist tokens or users.

This is not a proxy-based upgradable contract.

The contract can be compiled with a more recent Solidity version

Pausable contracts refer to contracts that can be intentionally halted by their owners, temporarily
preventing token holders from engaging in buying or selling activities. This pause mechanism allows
contract owners to exert control over the token's functionality, introducing a temporary suspension in
trading activities for various reasons such as security concerns, updates, or regulatory compliance
adjustments.

The contract should be written using the latest Solidity pragma version as it comes with numerous bug
fixes. Utilizing an outdated version exposes the contract to vulnerabilities associated with known issues
that have been addressed in subsequent updates. Therefore, it is essential to stay current with the latest
Solidity version to ensure the robustness and security of the contract against potential vulnerabilities.

The Proxy-Based Upgradable Contract module is dedicated to identifying the presence of upgradeable
contracts or proxy patterns within a smart contract. The utilization of upgradeable contracts or proxy
patterns enables contract owners to make dynamic changes to various aspects, including functions, token
circulation, and distribution, without requiring a complete redeployment of the contract.

This module is designed to identify whether the owner of a smart contract has the capability to blacklist
specific tokens or users. In a scenario where owners possess the authority to blacklist, all transactions
related to the blacklisted entities will be immediately halted. Ownership privileges that include the ability
to blacklist tokens or users can be a critical feature in certain use cases, providing the owner with control
over potential malicious activities, compliance issues, or other concerns. However, in situations where this
authority is abused or misapplied, it can lead to unintended consequences and user dissatisfaction.

A token is expected to adhere to the established standards of the ERC-20 token specification,
encompassing the inclusion of all necessary functions with standardized names and arguments as defined
by the ERC-20 standard.

Page 6 SolidityScan A security assessment report



The contract's owner was not found.

The contract cannot be self-destructed by owners.

No addresses contain more than 5% of circulating token supply.

The contract is not vulnerable to ERC-20 approve Race condition vulnerability.

Critical functions that add, update, or delete owner/admin addresses are not detected.

A smart contract within the Web3 ecosystem that incorporates critical administrative functions can
potentially compromise the transparency and intended objectives of the contract. It is imperative to
conduct a thorough examination of these functions, especially in the realm of Web3 smart contracts.
Minimizing administrative functions in a token contract within the Web3 framework can significantly
reduce the likelihood of complications and enhance overall efficiency and clarity.

Users with token balances exceeding 5% of the circulating token supply are critical to monitor, as their
actions can significantly influence the token's price and ecosystem. Proper token distribution helps
maintain a healthy market by preventing concentration of power and promoting fair participation.

Renounced ownership indicates that the contract is truly decentralized, as the owner has relinquished
control, ensuring that the contract's functionality and rules cannot be altered by administrators or any
central authority.

The ERC-20 race condition arises when two or more transactions attempt to interact with the same ERC-
20 token contract concurrently. This scenario can result in conflicts and unexpected behavior due to the
non-atomic nature of certain operations in the contract. Atomicity refers to the concept that an operation
is indivisible and occurs as a single, uninterruptible unit.

The SELFDESTRUCT opcode is a critical operation in Ethereum smart contracts, allowing a contract to
autonomously terminate itself. When invoked, this opcode deallocates the contract, freeing up storage and
computational resources on the Ethereum blockchain. Notably, the remaining Ether in the contract is sent
to a specified address, ensuring a responsible handling of funds.

Page 7 SolidityScan A security assessment report



Hardcoded addresses were not found.

Owners cannot whitelist tokens or users.

The contract does not have a cooldown feature.

Owners cannot set or update Fees in the contract.

The contracts are not using functions that can only be called by the owners.

An overpowered owner risk occurs when a contract has numerous functions that only the owner can
execute. This can lead to centralization issues and potential abuse, as the owner has disproportionate
control over the contract's operations.

Cooldown functions, a crucial aspect in the smart contract landscape, are employed to temporarily
suspend trading activities or other contract workflows. The mechanism introduces a time-based delay,
effectively preventing users from repeatedly executing transactions or engaging in rapid buying and
selling of tokens. Cooldown functions are used to halt trading or other contract workflows for a certain
amount of time so as to prevent users from repeatedly executing transactions or buying and selling
tokens.

The inclusion of a fixed or hardcoded address within a smart contract has the potential to pose significant
challenges in the future, particularly concerning the contract's adaptability and upgradability. This static
reference to an address may impede the seamless implementation of updates or modifications to the
contract, hindering its ability to evolve in response to changing requirements. Such rigidity may result in
complications and obstacles when attempting to enhance or alter the smart contract's functionality over
time.

This empowers the contract owner to selectively grant privileges to users, such as exemption from fees or
access to unique contract features.

In the context of smart contracts, fees are essential components that may be associated with various
functionalities, such as transactions, token transfers, or other specific actions. The ability for owners to set
or update fees is particularly valuable in scenarios where fee adjustments are needed to align with market
conditions, regulatory requirements, or project-specific considerations. The Owners Can Set or Update
Fees module focuses on identifying the capability within a smart contract for owners to establish or modify
fees. This feature allows contract owners to have control over the fee structure within the contract,
providing flexibility and adaptability to changing circumstances.

Page 8 SolidityScan A security assessment report



IS SPAM CONTRACT

Absence of Malicious Typecasting.

No such functions retrieving ownership were found.

The contract does not have any owner-controlled functions modifying token balances.

Owner’s wallet contains 0 tokens which is less than 5% of the circulating token supply.

A spam NFT is an NFT that is considered low-quality or deceptive, cluttering the marketplace and
potentially misleading users.

A check on the owner's wallet balance exceeding a specific token amount can indicate a centralization
risk, where the owner may have disproportionate control over the token supply, potentially leading to
manipulation or abuse.

The Function Retrieving Ownership module serves the purpose of swiftly and efficiently retrieving
ownership-related information within a smart contract. This functionality is vital for projects seeking to
access and manage ownership data seamlessly. Utilizing this module, developers can streamline the
process of obtaining ownership details, contributing to the effective administration of ownership-related
functions within the ecosystem.

Malicious typecasting, particularly the conversion of uint160 values to addresses, is a tactic often used by
scammers to create deceptive addresses that can bypass standard detection mechanisms, facilitating
fraudulent activities.

The Owners Updating Token Balance module is focused on identifying situations where a smart contract has
functions controlled by owners that allow them to update token balances for other users or the contract. If a
contract permits owners to manipulate token balances, it can have significant implications on user holdings
and overall contract integrity. In some scenarios, contracts may provide owners with functions that enable the
manual adjustment of token balances. While this feature can be legitimate for specific use cases, such as
token distribution or rewards, it also introduces potential risks. Allowing owners to arbitrarily update token
balances may lead to vulnerabilities, manipulation, or unintended changes in the token ecosystem.

Page 9 SolidityScan A security assessment report



LIQUIDITY LOCK STATUS

LIQUIDITY BURN STATUS

Valid token name or symbol.

No such functions having gas abuse via malicious minting.

No such functions having totalSupply function update were found.

The liquidity status determines whether the liquidity for the scanned contract is securely locked or
accessible. If locked, LP tokens are stored in a time-locked contract, preventing any withdrawals until the
lock expires. This helps protect investors from sudden liquidity removal. If not locked, LP tokens remain
accessible, allowing project developers or liquidity providers to withdraw liquidity at any time, potentially
posing risks to investors.

Gas abuse refers to patterns within smart contracts that manipulate gas consumption in ways that
unnecessarily increase transaction costs for users. This can occur through various mechanisms designed
to exploit gas inefficiencies or inflate gas usage, shifting the financial burden onto users without their
knowledge.

The token name or symbol contains potentially harmful content, such as HTML tags or JavaScript code. If
these unsanitized strings are displayed by user interfaces, they could execute scripts in users' browsers,
posing a significant risk of Cross-Site Scripting (XSS).

The liquidity burn status indicates whether the LP tokens for the scanned contract have been permanently
removed or remain accessible. If burnt, the LP tokens are sent to an irrecoverable address, ensuring that
the liquidity cannot be withdrawn, offering permanent stability and security to the project. If not burnt, the
LP tokens could still be accessed and withdrawn, which might expose investors to risks of liquidity
manipulation or removal.

A fixed supply token is critical when the token's value is tied to scarcity or when precise control over
inflation or deflation is required. Without a fixed supply, the contract could introduce unexpected inflation,
devalue the token, or erode trust in the token's consistency.

Page 10 SolidityScan A security assessment report



No hidden owner detected

The contract is not a honeypot.

The token is not a counterfeit token

Absence of external call risk in critical functions.

No such functions having addresses with special access.

Special permissions granted to non-owner addresses allow them to execute specific functions with
elevated access. This can introduce security risks, as these privileged addresses may perform critical
operations that impact the contract's state or user funds. If not properly managed or monitored, these
permissions could lead to unauthorized or malicious actions, compromising the contract's integrity.

The Hidden Owner check identifies whether there are any hidden owner roles within the contract. Hidden
ownership can allow unauthorized access and control over contract functions, which poses a risk to users
and stakeholders.

A token is honeypot when it exhibits the typical characteristics designed to trap investors’ funds while
preventing them from profiting. Common signs include the inability to sell tokens once purchased,
restrictive transfer functions coded into the smart contract, excessive or hidden taxes on transactions, or
permissions that allow only the contract owner to execute sells.

This check identifies risks associated with external calls within critical functions. External calls can
introduce vulnerabilities such as unexpected state changes, or dependencies on external contracts, which
may compromise the integrity and reliability of the function’s execution.

The contract is found to have the token symbol identical to that of official tokens, thereby falling under the
category of counterfeit tokens. These counterfeit tokens can mislead users into believing they are
interacting with legitimate, well-known cryptocurrencies, potentially leading to financial losses and
damaging the reputation of the official token.

Page 11 SolidityScan A security assessment report



Issue Type
SOLIDITY PRAGMA VERSION

Description
The contract should be written using the latest Solidity pragma version as it comes with numerous
bug fixes. Utilizing an outdated version exposes the contract to vulnerabilities associated with
known issues that have been addressed in subsequent updates. Therefore, it is essential to stay
current with the latest Solidity version to ensure the robustness and security of the contract against
potential vulnerabilities.

File Location Line No.

Update the Solidity pragma version to the latest stable version to benefit from the latest bug fixes and
security enhancements.

Action Taken
Pending Fix

Remediation

contract.sol L2 - L2

Page 12 SolidityScan A security assessment report



04. Findings Summary

0
Crit

0
High

0
Med

2
Low

0x3C10e343095e4FDdf5CC36FCd41E298cF9aD2eAA
 

39
Info

20
Gas

Security Score
91.48/100

BINANCE (Bsc Mainnet) View on Bscscan

Scan duration
9 secs

Lines of code
226

Total Vulnerabilities
found

61

Page 13 SolidityScan A security assessment report



05. Vulnerability Details

S. No.
L001

Bug ID

Issue Type
USE OF FLOATING PRAGMA

Severity

File Location

Detection Method
Automated

Instances
1

Line No. Action Taken

Solidity source files indicate the versions of the compiler they can be compiled with using a pragma directive at the t
op of the solidity file. This can either be a floating pragma or a specific compiler version.
The contract was found to be using a floating pragma which is not considered safe as it can be compiled with all the
versions described.

Description

Low

SSB_5045683_6 contract.sol L2 - L2 Pending Fix

Page 14 SolidityScan A security assessment report



06. Scan History

1.

No

Critical

Date

2026-02-10

High

91.48

Medium

Security Score

Low

0 0 0

Scan Overview

2

Informational

39 20

Gas

Page 15 SolidityScan A security assessment report



07. Disclaimer 

The security audit is not meant to replace functional testing done before a software release.

There is no warranty that all possible security issues of a particular smart contract(s) will be found by the
tool, i.e., It is not guaranteed that there will not be any further findings based solely on the results of this
evaluation.

As one audit-based assessment cannot be considered comprehensive, we always recommend proceeding
with several independent manual audits including manual audit and a public bug bounty program to ensure
the security of the smart contracts.

Emerging technologies such as Smart Contracts and Solidity carry a high level of technical risk and
uncertainty. There is no warranty or representation made by this report to any Third Party in regards to the
quality of code, the business model or the proprietors of any such business model, or the legal compliance
of any business.

The Reports neither endorse nor condemn any specific project or team, nor do they guarantee the security
of any specific project. The contents of this report do not, and should not be interpreted as having any
bearing on, the economics of tokens, token sales, or any other goods, services, or assets.

In no way should a third party use these reports to make any decisions about buying or selling a token,
product, service, or any other asset. It should be noted that this report is not investment advice, is not
intended to be relied on as investment advice, and has no endorsement of this project or team. It does not
serve as a guarantee as to the project's absolute security.

The assessment provided by SolidityScan is subject to dependencies and under continuing development.
You agree that your access and/or use, including but not limited to any services, reports, and materials, will
be at your sole risk on an as-is, where-is, and as-available basis. SolidityScan owes no duty to any third
party by virtue of publishing these Reports.

Page 16 SolidityScan A security assessment report


